Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Pulse (Basel) ; 12(1): 27-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572498

RESUMO

Background: Exercise training elicits indubitable positive adaptation in microcirculation in health and disease populations. An inclusive overview of the current knowledge regarding the effects of exercise on microvascular function consolidates an in-depth understanding of microvasculature. Summary: The main physiological function of microvasculature is to maintain optimal blood flow regulation to supply oxygen and nutrition during elevated physical demands in the cardiovascular system. There are several cellular and molecular alterations in resistance vessels in response to exercise intervention, an increase in nitric oxide-mediated vasodilation through the regulation of oxidative stress, inflammatory response, and ion channels in endothelial cells, thus increasing myogenic tone via voltage-gated Ca2+ channels in smooth muscle cells. Key Messages: In the review, we postulate that exercise should be considered a medicine for people with diverse diseases through a comprehensive understanding of the cellular and molecular underlying mechanisms in microcirculation through exercise training.

2.
Front Public Health ; 12: 1302175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481847

RESUMO

Introduction: This study aimed to investigate the potential of short-term aerobic exercise to mitigate skeletal muscle mitochondrial damage following ambient PM2.5 exposure, and how 12 weeks of endurance training can enhance aerobic fitness to protect against such damage. Methods: Twenty-four male C57BL/6 J mice were split into sedentary (SED, n = 12) and endurance training (ETR, n = 12) groups. The ETR group underwent 12 weeks of training (10-15 m/min, 60 min/day, 4 times/week), confirmed by an Endurance Exercise Capacity (EEC) test. Post-initial training, the SED group was further divided into SSED (SED and sedentary, n = 6) and SPE (SED and PM2.5 + Exercise, n = 6). Similarly, the ETR group was divided into EEX (ETR and Exercise, n = 6) and EPE (ETR and PM2.5 + Exercise, n = 6). These groups underwent 1 week of atmospherically relevant artificial PM2.5 exposure and treadmill running (3 times/week). Following treatments, an EEC test was conducted, and mice were sacrificed for blood and skeletal muscle extraction. Blood samples were analyzed for oxidative stress indicators, while skeletal muscles were assessed for mitochondrial oxidative metabolism, antioxidant capacity, and mitochondrial damage using western blot and transmission electron microscopy (TEM). Results: After 12 weeks of endurance training, the EEC significantly increased (p < 0.000) in the ETR group compared to the SED group. Following a one-week comparison among the four groups with atmospherically relevant artificial PM2.5 exposure and exercise treatment post-endurance training, the EEX group showed improvements in EEC, oxidative metabolism, mitochondrial dynamics, and antioxidant functions. Conversely, these factors decreased in the EPE group compared to the EEX. Additionally, within the SPE group, exercise effects were evident in HK2, LDH, SOD2, and GPX4, while no impact of short-term exercise was observed in all other factors. TEM images revealed no evidence of mitochondrial damage in both the SED and EEX groups, while the majority of mitochondria were damaged in the SPE group. The EPE group also exhibited damaged mitochondria, although significantly less than the SPE group. Conclusion: Atmospherically relevant artificial PM2.5 exposure can elevate oxidative stress, potentially disrupting the benefits of short-term endurance exercise and leading to mitochondrial damage. Nonetheless, increased aerobic fitness through endurance training can mitigate PM2.5-induced mitochondrial damage.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Humanos , Masculino , Camundongos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Camundongos Endogâmicos C57BL , Mitocôndrias , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Material Particulado/efeitos adversos
3.
Clin Res Hepatol Gastroenterol ; 48(1): 102263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061546

RESUMO

BACKGROUND: The involvement of monoacylglycerol O-acyltransferase 1 (MOGAT1) in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) has been recognized. While exercise is recommended for the improvement of obesity and MASLD, the impact of exercise intensity remains unclear. This study aimed to examine the influence of exercise intensity on MOGAT1 expression in high-fat diet (HFD)-induced obese mice with MASLD. METHOD: Male C57BL/6 mice aged 6 weeks were subjected to either a regular or HFD with 60 % fat content for 8 weeks. The mice were categorized into 5 groups based on their diet and exercise intensity: normal diet group (ND), HFD group, low-intensity exercise with HFD group (HFD+LIE), moderate-intensity exercise with HFD group (HFD+MIE), and high-intensity exercise (HIE) with HFD group (HFD+HIE). The duration of running was adjusted to ensure uniform exercise load across groups (total distance = 900 m): HFD+LIE at 12 m/min for 75 min, HFD+MIE at 15 m/min for 60 min, and HFD+HIE at 18 m/min for 50 min. RESULTS: Lipid droplet size and MASLD activity score were significantly lower in the HFD+HIE group compared to other exercise-intensity groups (p < 0.05). Among the 3 intensity exercise groups, the lowest MOGAT1 protein expression was found in the HFD+HIE group (p < 0.05). CONCLUSION: This study reveals that high-intensity exercise has the potential to mitigate MASLD development, partly attributed to the downregulation of MOGAT1 expression.


Assuntos
Fígado Gorduroso , Monoglicerídeos , Animais , Masculino , Camundongos , Aciltransferases , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
4.
Artigo em Inglês | MEDLINE | ID: mdl-37870688

RESUMO

The study aimed to systematically review the effects of exercise training (EX) on brachial artery flow-mediated dilation (FMD) and inflammatory biomarkers in patients with peripheral artery disease (PAD). Five electronic databases were searched: (i) patients with PAD aged ≥ 18; (ii) structured EX ≥ 2 weeks; (iii) measured brachial artery FMD; and (iv) measured blood inflammatory biomarkers. Eighteen studies met the inclusion criteria. EX increased FMD but had no effect on C-reactive protein, interleukin-6, and tumor necrosis factor-α. Subgroups with moderate intensity had a greater increase in FMD than subgroups with vigorous intensity. There was no difference in effect on FMD and three inflammatory biomarkers between subgroups training for ≤ 12 weeks and > 12 weeks of EX, < 50 min and ≥ 50 min of session duration, and < 150 min and ≥ 150 min of weekly volume, respectively. These results suggest that EX-induced improvement in vascular function can be independent of the improvement of systemic inflammation.

5.
Front Nutr ; 10: 1169436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415914

RESUMO

Background: In older adults, depression is associated with several other clinical problems such as cognitive impairment and low quality of life. Several studies have evaluated the relationship between vitamin D and depression in older adults; however, the results have been controversial thus far. Objective: This study aimed to investigate the effects of vitamin D supplementation on depressive symptom improvement among individuals aged ≥60 years with or without a diagnosis of depression or depressive symptoms based on a meta-analysis of randomized controlled trials (RCTs). Methods: RCTs were identified to analyze the relationship between vitamin D supplementation and depressive symptoms. MEDLINE, CENTRAL, Embase, and PsycINFO were systematically searched for relevant articles published from inception to November 2022. RCTs that evaluated the effect of vitamin D supplementation in participants aged ≥60 years compared to placebo were included. A random effects model was used in this meta-analysis because of the differences between the included RCTs. The quality of the RCTs was assessed using Risk of Bias 2. Results: Seven trials were included in the analyses. The primary outcome of pre-post score changes included five trials with a total of 752 participants. The secondary outcome of post-intervention score included all seven trials with a total of 4,385 participants. No significant improvement in depressive symptoms in either pre-post score changes [standardized mean difference (SMD) = -0.49; 95% confidence interval (CI) -1.07-0.09; p = 0.10] or post-intervention score (SMD = -0.10; 95% CI -0.28-0.07; p = 0.25) was found. Conclusion: Vitamin D supplementation in older adults was not associated with an improvement in depressive symptoms. More studies in older adults are needed to evaluate the association between vitamin D supplementation and depression.

6.
JMIR Mhealth Uhealth ; 11: e46286, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358905

RESUMO

BACKGROUND: Depression is a substantial global health problem, affecting >300 million people and resulting in 12.7% of all deaths. Depression causes various physical and cognitive problems, leading to a 5-year to 10-year decrease in life expectancy compared with the general population. Physical activity is known to be an effective, evidence-based treatment for depression. However, people generally have difficulties with participating in physical activity owing to limitations in time and accessibility. OBJECTIVE: To address this issue, this study aimed to contribute to the development of alternative and innovative intervention methods for depression and stress management in adults. More specifically, we attempted to investigate the effectiveness of a mobile phone-based physical activity program on depression, perceived stress, psychological well-being, and quality of life among adults in South Korea. METHODS: Participants were recruited and randomly assigned to the mobile phone intervention or waitlist group. Self-report questionnaires were used to assess variables before and after treatment. The treatment group used the program around 3 times per week at home for 4 weeks, with each session lasting about 30 minutes. To evaluate the program's impact, a 2 (condition) × 2 (time) repeated-measures ANOVA was conducted, considering pretreatment and posttreatment measures along with group as independent variables. For a more detailed analysis, paired-samples 2-tailed t tests were used to compare pretreatment and posttreatment measurements within each group. Independent-samples 2-tailed t tests were conducted to assess intergroup differences in pretreatment measurements. RESULTS: The study included a total of 68 adults aged between 18 and 65 years, who were recruited both through web-based and offline methods. Of these 68 individuals, 41 (60%) were randomly assigned to the treatment group and 27 (40%) to the waitlist group. The attrition rate was 10.2% after 4 weeks. The findings indicated that there is a significant main effect of time (F1,60=15.63; P=.003; ηp2=0.21) in participants' depression scores, indicating that there were changes in depression level across time. No significant changes were observed in perceived stress (P=.25), psychological well-being (P=.35), or quality of life (P=.07). Furthermore, depression scores significantly decreased in the treatment group (from 7.08 to 4.64; P=.03; Cohen d=0.50) but not in the waitlist group (from 6.72 to 5.08; P=.20; Cohen d=0.36). Perceived stress score of the treatment group also significantly decreased (from 2.95 to 2.72; P=.04; Cohen d=0.46) but not in the waitlist group (from 2.82 to 2.74; P=.55; Cohen d=0.15). CONCLUSIONS: This study provided experimental evidence that mobile phone-based physical activity program affects depression significantly. By exploring the potential of mobile phone-based physical activity programs as a treatment option, this study sought to improve accessibility and encourage participation in physical activity, ultimately promoting better mental health outcomes for individuals with depression and stress.


Assuntos
Telefone Celular , Qualidade de Vida , Humanos , Adulto , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Bem-Estar Psicológico , Depressão/terapia , Exercício Físico
7.
Integr Med Res ; 12(2): 100949, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214317

RESUMO

Background: Accelerated skeletal muscle wasting is a shared trait among many pathologies and aging. Acupuncture has been used as a therapeutic intervention to control pain; however, little is known about its effects on skeletal muscle atrophy and function. The study's purpose was to compare the effects of acupuncture, electro-acupuncture, and electrical stimulation on cast-induced skeletal muscle atrophy. Methods: Forty female Sprague Dawley rats were randomly divided into groups: Control, casted (CAST), CAST+Acupuncture (CAST-A), 4) CAST+Electro-acupuncture (CAST-EA), and CAST+Electrical stimulation (CAST-ES) (n = 8). Plaster casting material was wrapped around the left hind limb. Acupuncture and electro-acupuncture (10 Hz, 6.4 mA) treatments were applied by needling acupoints (stomach-36 and gallbladder-34). Electrical stimulation (10 Hz, 6.4 mA) was conducted by needling the lateral and medial gastrocnemius muscles. Treatments were conducted for 15 min, three times/week for 14 days. Muscle atrophy F-box (MAFbx), muscle RING finger 1 (MuRF1), and contractile properties were assessed. Results: Fourteen days of cast-immobilization decreased muscle fiber CSA by 56% in the CAST group (p = 0.00); whereas, all treatment groups demonstrated greater muscle fiber CSA than the CAST group (p = 0.00). Cast-immobilization increased MAFbx and MuRF1 protein expression in the CAST group (p<0.01) while the CAST-A, CAST-EA, and CAST-ES groups demonstrated lower levels of MAFbx and MuRF1 protein expression (p<0.02) compared to the CAST group. Following fourteen days of cast-immobilization, peak twitch tension did not differ between the CAST-A and CON groups (p = 0.12). Conclusion: Skeletal muscle atrophy, induced by 14 days of cast-immobilization, was significantly attenuated by acupuncture, electro-acupuncture, or electrical stimulation.

9.
J Appl Physiol (1985) ; 133(1): 119-129, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35616304

RESUMO

T cells often undergo age-related changes, which may be offset by regular exercise training. However, the majority of literature is derived from cardiorespiratory exercise studies. The purpose of this study was to examine the effects of acute cardiorespiratory exercise and acute resistance exercise on the T-cell response among physically active (PA) older adults compared with physically inactive (PI) older adults. Twenty-four healthy older adults [PA n = 12; PI n = 12; means ± SD; age (years) PA 62 ± 5, PI 64 ± 5; body mass index (BMI; kg/m2) PA 23.9 ± 3.0, PI 25.6 ± 3.5] completed one bout each of matched intensity cardiorespiratory exercise and resistance exercise in a randomized order. Blood samples drawn preexercise, postexercise, and 1 h postexercise (recovery) were analyzed by flow cytometry for T cells and T-cell subsets. Resistance exercise mobilized more T-cell subsets in PI (10 of the measured types, including total T cells; CD45RA+ CD62L+, CD45RA- CD62L+, CD45RA- CD62L-, and CD45RA+ CD62L- T cells), whereas cardiorespiratory exercise mobilized more subsets in PA (CD45RA+ CD62L- and CD57+ CD45RA+ CD62L- CD4+ T cells). Both cardiorespiratory exercise and resistance exercise elicited a significant (P < 0.05) mobilization of highly differentiated (CD45RA+ CD62L-; CD57+ CD45RA+ CD62L-) CD8+ T cells into the circulation postexercise in both PA and PI groups. Furthermore, cardiorespiratory exercise resulted in a decrease in the number of circulating Th17 cells postexercise, whereas resistance exercise increased Th17 cell mobilization compared with the cardiorespiratory exercise response. There are differences between cardiorespiratory exercise and resistance exercise on the immune responses of T cells, particularly in PI individuals. This research study was registered at clinicaltrials.gov NCT03794050. NEW & NOTEWORTHY A bout of resistance exercise did not elicit the same T-cell responses as a bout of walking on a treadmill, and the response was also not the same for people who participate in regular exercise compared with those who do not. Although there were several similarities, these potential differences underscore the importance of careful selection of exercise protocol based on the population studied and the desired T-cell response to exercise outcome.


Assuntos
Linfócitos T CD8-Positivos , Treinamento de Força , Idoso , Contagem de Células , Estudos Cross-Over , Exercício Físico/fisiologia , Humanos , Antígenos Comuns de Leucócito , Pessoa de Meia-Idade
10.
J Cachexia Sarcopenia Muscle ; 12(6): 2174-2186, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704401

RESUMO

BACKGROUND: Skeletal muscle atrophy is a debilitating complication of many chronic diseases, disuse conditions, and ageing. Genome-wide gene expression analyses have identified that elevated levels of microRNAs encoded by the H19X locus are among the most significant changes in skeletal muscles in a wide scope of human cachectic conditions. We have previously reported that the H19X locus is important for the establishment of striated muscle fate during embryogenesis. However, the role of H19X-encoded microRNAs in regulating skeletal mass in adults is unknown. METHODS: We have created a transgenic mouse strain in which ectopic expression of miR-322/miR-503 is driven by the skeletal muscle-specific muscle creatine kinase promoter. We also used an H19X mutant mouse strain in which transcription from the locus is interrupted by a gene trap. Animal phenotypes were analysed by standard histological methods. Underlying mechanisms were explored by using transcriptome profiling and validated in the two animal models and cultured myotubes. RESULTS: Our results demonstrate that the levels of H19X microRNAs are inversely related to postnatal skeletal muscle growth. Targeted overexpression of miR-322/miR-503 impeded skeletal muscle growth. The weight of gastrocnemius muscles of transgenic mice was only 54.5% of the counterparts of wild-type littermates. By contrast, interruption of transcription from the H19X locus stimulates postnatal muscle growth by 14.4-14.9% and attenuates the loss of skeletal muscle mass in response to starvation by 12.8-21.0%. Impeded muscle growth was not caused by impaired IGF1/AKT/mTOR signalling or a hyperactive ubiquitin-proteasome system, instead accompanied by markedly dropped abundance of translation initiation factors in transgenic mice. miR-322/miR-503 directly targets eIF4E, eIF4G1, eIF4B, eIF2B5, and eIF3M. CONCLUSIONS: Our study illustrates a novel pathway wherein H19X microRNAs regulate skeletal muscle growth and atrophy through regulating the abundance of translation initiation factors, thereby protein synthesis. The study highlights how translation initiation factors lie at the crux of multiple signalling pathways that control skeletal muscle mass.


Assuntos
MicroRNAs , Atrofia Muscular , Animais , Camundongos , MicroRNAs/genética , Fibras Musculares Esqueléticas , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fatores de Iniciação de Peptídeos
11.
Sci Rep ; 11(1): 15449, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326395

RESUMO

Endoplasmic reticulum (ER) stress and uncoupling protein-2 (UCP2) activation are opposing modulators of endothelial dysfunction in atherosclerosis. Exercise reduces atherosclerosis plaques and enhances endothelial function. Our aim was to understand how exercise affects ER stress and UCP2 activation, and how that relates to endothelial dysfunction in an atherosclerotic murine model. Wild type (C57BL/6, WT) and apolipoprotein-E-knockout (ApoEtm1Unc, ApoE KO) mice underwent treadmill exercise training (EX) or remained sedentary for 12 weeks. Acetylcholine (ACh)-induced endothelium-dependent vasodilation was determined in the presence of an eNOS inhibitor (L-NAME), UCP2 inhibitor (genipin), and ER stress inducer (tunicamycin). UCP2, ER stress markers and NLRP3 inflammasome signaling were quantified by western blotting. p67phox and superoxide were visualized using immunofluorescence and DHE staining. Nitric oxide (NO) was measured by nitrate/nitrite assay. ACh-induced vasodilation was attenuated in coronary arterioles of ApoE KO mice but improved in ApoE KO-EX mice. Treatment of coronary arterioles with L-NAME, tunicamycin, and genipin significantly attenuated ACh-induced vasodilation in all mice except for ApoE KO mice. Exercise reduced expression of ER stress proteins, TXNIP/NLRP3 inflammasome signaling cascades, and Bax expression in the heart of ApoE KO-EX mice. Further, exercise diminished superoxide production and NADPH oxidase p67phox expression in coronary arterioles while simultaneously increasing UCP2 expression and nitric oxide (NO) production in the heart of ApoE KO-EX mice. Routine exercise alleviates endothelial dysfunction in atherosclerotic coronary arterioles in an eNOS, UCP2, and ER stress signaling specific manner, and resulting in reduced TXNIP/NLRP3 inflammasome activity and oxidative stress.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/terapia , Vasos Coronários/metabolismo , Estresse do Retículo Endoplasmático , Terapia por Exercício/métodos , Condicionamento Físico Animal/métodos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/terapia , Proteína Desacopladora 2/deficiência , Acetilcolina/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Aterosclerose/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Teste de Esforço , Iridoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Placa Aterosclerótica/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Desacopladora 2/antagonistas & inibidores , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética
12.
Metab Brain Dis ; 36(8): 2263-2271, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34003412

RESUMO

Vascular endothelial growth factor (VEGF) regulates angio/neurogenesis and also tightly links to the pathogenesis of Alzheimer's disease (AD). Although exercise has a beneficial effect on neurovascular function and cognitive function, the direct effect of exercise on VEGF-related signaling and cognitive deficit in AD is incompletely understood. Therefore, the purpose of this study was to investigate the protective effect of exercise on angiostatin/VEGF cascade and cognitive function in AD model rats. Wistar male rats were randomly divided into five groups: control (CON), injection of DMSO (Sham-CON), CON-exercise (sham-EX), intrahippocampal injection of Aß (Aß), and Aß-exercise (Aß-EX). Rats in EX groups underwent treadmill exercise for 4 weeks, then the cognitive function was measured by the Morris Water Maze (MWM) test. mRNA levels of hypoxia-induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and angiostatin were determined in hippocampus by RT-PCR. We found that spatial learning and memory were impaired in Aß-injected rats, but exercise training improved it. Moreover, exercise training increased the reduced mRNA expression level of VEGF signaling, including HIF1α, VEGF, and VEGFR2 in the hippocampus from Aß-injected rats. Also, the mRNA expression level of angiostatin was elevated in the hippocampus from Aß-injected rats, and exercise training abrogated its expression. Our findings suggest that exercise training improves cognitive function in Aß-injected rats, possibly through enhancing VEGF signaling and reducing angiostatin.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/farmacologia , Angiostatinas/metabolismo , Angiostatinas/farmacologia , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Med Sci Sports Exerc ; 52(12): 2538-2545, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32555019

RESUMO

PURPOSE: The nodlike receptor family pyrin domain containing 3 (NLRP3) inflammasome is a critical player in vascular pathology as it regulates caspase-1-mediated interleukin (IL)-1ß processing. Physical activity ameliorates obesity-induced inflammation and vascular dysfunction, but the mechanisms responsible for these positive changes are incompletely understood. Here, the protective effect of physical activity on the inflammasome-associated vascular dysfunction in obesity and its putative mechanisms were investigated. METHODS: Mice were fed a control low-fat diet (LFD) or a high-fat diet (HFD; 45% of calories from fat) and provided with running wheel access (LF-RUN or HF-RUN) or denied wheel access for our sedentary condition (LF-SED or HF-SED). The NLRP3 inflammasome-associated pathway, including NLRP3, caspase-1, and IL-1ß, in mice aorta was examined by RT-qPCR and FLICA and DAB staining. The protein expression of zonula occluden-1 (ZO-1), ZO-2, adiponectin (APN), and adiponectin receptor 1 (AdipoR1) in aortic endothelial cells was determined by immunofluorescence double staining. Intracellular reactive oxidative stress and nitric oxide (NO) production were monitored with fluorescence probes, dihydroethidium, and diaminofluorecein. RESULTS: HFD increased caspase-1 and IL-1ß at mRNA and protein levels in endothelial cells of the aorta, and this was attenuated by voluntary running. HFD decreased ZO-1 and ZO-2 expression and reduced APN and AdipoR1 signaling; these were restored by running. The elevated intracellular superoxide (O2) production observed in HF-SED was ameliorated in HF-RUN. Finally, HF-RUN improved NO production in the aorta compared with HF-SED. CONCLUSIONS: Our findings suggest that voluntary running ameliorates mechanisms associated with vascular dysfunction by suppressing NLRP3 inflammasome, improving NO production, and reducing oxidative stress. Such benefits of physical activity may be, at least in part, associated with APN-AdipoR1 signaling and tight junction protein expression.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal/fisiologia , Adiponectina/metabolismo , Animais , Aorta/metabolismo , Caspase 1/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , RNA Mensageiro/metabolismo , Receptores de Adiponectina/metabolismo , Superóxidos/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-2/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 318(6): H1559-H1569, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383993

RESUMO

Cerebrovascular dysfunction is a critical risk factor for the pathogenesis of Alzheimer's disease (AD). The purinergic P2Y2 receptor and endoplasmic reticulum (ER) stress are tightly associated with vascular dysfunction and the pathogenesis of AD. However, the protective effects of exercise training on P2Y2 receptor- and ER stress-associated cerebrovascular dysfunction in AD are mostly unknown. Control (C57BL/6, CON) and AD (APP/PS1dE9, AD) mice underwent treadmill exercise training (EX). 2-MeS-ATP-induced dose-dependent vasoreactivity was determined by using a pressurized posterior cerebral artery (PCA) from 10-12-mo-old mice. Human brain microvascular endothelial cells (HBMECs) were exposed to laminar shear stress (LSS) at 20 dyn/cm2 for 30 min, 2 h, and 24 h. The expression of P2Y2 receptors, endothelial nitric oxide synthase (eNOS), and ER stress signaling were quantified by Western blot analysis. Notably, exercise converted ATP-induced vasoconstriction in the PCA from AD mice to vasodilation in AD+EX mice to a degree commensurate to the vascular reactivity observed in CON mice. Exercise reduced the expression of amyloid peptide precursor (APP) and increased the P2Y2 receptor and Akt/eNOS expression in AD mice brain. Mechanistically, LSS increased the expression of both P2Y2 receptor and eNOS protein in HBMECs, but these increases were blunted by a P2Y2 receptor antagonist in HBMECs. Exercise also reduced the expression of aberrant ER stress markers p-IRE1, p/t-eIF2α, and CHOP, as well as Bax/Bcl-2, in AD mice brain. Collectively, our results demonstrate for the first time that exercise mitigates cerebrovascular dysfunction in AD through modulating P2Y2 receptor- and ER stress-dependent endothelial dysfunction.NEW & NOTEWORTHY A limited study has investigated whether exercise training can improve cerebrovascular function in Alzheimer's disease. The novel findings of the study are that exercise training improves cerebrovascular dysfunction through enhancing P2Y2 receptor-mediated eNOS signaling and reducing ER stress-associated pathways in AD. These data suggest that exercise training, which regulates P2Y2 receptor and ER stress in AD brain, is a potential therapeutic strategy for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Circulação Cerebrovascular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Condicionamento Físico Animal/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Cerebral Posterior/metabolismo , Artéria Cerebral Posterior/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
J Exerc Nutrition Biochem ; 23(3): 50-55, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31743974

RESUMO

PURPOSE: The purpose of this study was to identify the relationships between muscle mass, muscle strength, and physical and cognitive functions and to examine the effects of resistive Theraband® exercise on sarcopenia-associated variables in the older population. METHODS: A total of 28 elderly women (age: 69.90 ± 0.8 years) participated in this study, 15 of whom underwent elastic band exercise for 1 hour per day, twice per week for 8 weeks. The correlation analysis was conducted to identify the associations between body composition, skeletal muscle mass indices, grip strength, and physical and cognitive functions. All variables were assessed at baseline and post-exercise. RESULTS: Skeletal muscle mass was significantly associated with grip strength and physical function. Gait speed was positively correlated with grip strength and physical function, but not with cognitive function. Theraband® exercise significantly improved gait speed and physical function. CONCLUSION: The present data suggest that skeletal muscle mass is highly correlated with grip strength and physical function. Eight weeks of resistive Theraband® exercise favorably affects sarcopenia by improving gait speed and mobility of elderly women.

16.
Open Med (Wars) ; 14: 633-638, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31535035

RESUMO

To date, we found no published reports on the effects of metabolic syndrome and physical activity levels on left ventricular (LV) diastolic function in elderly women aged over 65 years. Our study involved patients with echocardiographically normal LV ejection fractions (≥50%) and normal LV dilatation diameters (≤55 mm). Elderly women with metabolic syndrome (n = 20) and healthy elderly women (n = 17) were selected and assessed with the National Cholesterol Education Program Adult Treatment Panel III, a metabolic syndrome diagnostic instrument. We compared the LV function indices and physical activity levels according to the presence (metabolic syndrome group) or absence (normal group) of metabolic syndrome. The LV end-systolic (LVES) diameter was significantly smaller (p = 0.037) and LV outflow tract (LVOT) diameter was significantly larger (p = 0.030) in the metabolic syndrome group. The left arterial dimension at end-systole (p = 0.024), left arterial volume (LAV) index (p = 0.015), early peak mitral inflow velocity (E, p = 0.031), early diastolic mitral annulus motion velocity (E'-septal, p = 0.044), (E'-lateral, p = 0.008), and E/late peak mitral inflow velocity ratio (E/A, p = 0.006) values were significantly lower and physical activity levels (p = 0.034) were significantly higher in the metabolic syndrome group. These results indicated that the metabolic syndrome group had relatively high physical activity levels compared to the normal group, which may have positively affected the LVES, LVOT, left atrial volume index, E, E', and E/A values.

17.
Microbiol Res ; 222: 35-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30928028

RESUMO

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide and is important for infant nutrition and health. Because 2'-FL has potential as a functional ingredient in advanced infant formula and as a prebiotic in various foods, a cost-effective method for 2'-FL production is desirable. α1,2-Fucosyltransferase (α1,2-FT) is one of the key enzymes enabling the microbial biosynthesis of this complex sugar. However, the α1,2-FTs reported so far for the whole-cell biosynthesis of 2'-FL originate from pathogens, posing a potential hurdle for approval as a food production method depending on countries. In this study, 10 α1,2-FT genes from bacteria of biosafety level one were identified, and the main features of the deduced amino acid sequences were characterized. Four codon-optimized α1,2-FT genes were synthesized and introduced into Escherichia coli ΔL M15 strain containing the plasmid pBCGW encoding guanosine 5'-diphosphate-l-fucose biosynthetic enzymes. Among the four genes, 2'-FL was produced only by the α1,2-FT from Thermosynechococcus elongatus (Te2FT). Bifidobacterium thermacidophilum α1,2-FT (Bt2FT) showed high expression but was not active in E. coli ΔL M15. The other two α1,2-FTs were not expressed to a detectable level. During batch flask fermentation of Te2FT-expressing E. coli ΔL M15 cells, 0.49 g/L 2'-FL was obtained after 72 h of induction. This is comparable to the values previously reported for α1,2-FTs from Helicobacter pylori and Bacteroides fragilis.


Assuntos
Escherichia coli/genética , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trissacarídeos/biossíntese , Proteínas de Bactérias/genética , Bacteroides fragilis/enzimologia , Bacteroides fragilis/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , DNA Bacteriano , Escherichia coli/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/enzimologia , Helicobacter pylori/metabolismo , Leite Humano , Oligossacarídeos
19.
Physiol Rep ; 6(12): e13738, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29932503

RESUMO

Activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome mediates the release of pro-inflammatory cytokine interleukin (IL)-1ß and thereby plays a pivotal role in the inflammatory response in vascular pathology. An active lifestyle has beneficial effects on inflammation-associated vascular dysfunction in obesity. However, it remains unclear how physical activity regulates NLRP3 inflammasome-mediated vascular dysfunction in obesity. Therefore, we explored the protective effect of physical activity on NLRP3 inflammasome-associated vascular dysfunction in mouse hearts, and the potential underlying mechanisms. C57BL/6J male mice were randomly divided into four groups: (1) control low-fat diet (LF-SED), (2) LF diet with free access to a voluntary running wheel (LF-RUN), (3) high-fat diet (HF-SED; 45% of calories from fat), and (4) HF-RUN. We examined NLRP3 inflammasome-related signaling pathways, nitric oxide (NO) signaling, and oxidative stress in coronary arterioles to test effects of HFD and physical activity. Voluntary running reduced NLRP3 inflammasome and its downstream effects, caspase-1 and IL-1ß in coronary arteriole endothelium of obese mice in immunofluorescence staining. HF-RUN attenuated HFD-dependent endothelial NO synthase (eNOS) reduction and thus increased NO production compared to HF-SED. HFD elevated intracellular superoxide production in coronary arterioles while voluntary running ameliorated oxidative stress. Our findings provide the first evidence that voluntary running attenuates endothelial NLRP3 inflammasome activation in coronary arterioles of HFD feeding mice. Results further suggest that voluntary running improves obesity-induced vascular dysfunction by preserved NO bioavailability via restored expression of eNOS and reduced oxidative stress.


Assuntos
Doença da Artéria Coronariana/etiologia , Vasos Coronários/fisiopatologia , Inflamassomos/fisiologia , Atividade Motora/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Obesidade/complicações , Animais , Arteríolas/fisiopatologia , Doença da Artéria Coronariana/fisiopatologia , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico/fisiologia , Obesidade/fisiopatologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
20.
Sci Rep ; 8(1): 7938, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784903

RESUMO

Endoplasmic reticulum (ER) stress is closely associated with atherosclerosis, but the effects of exercise on ER stress-mediated endothelial dysfunction in atherosclerosis is not yet fully understood. We assessed endothelium-dependent vasodilation in isolated mesenteric arteries from wild type (WT), WT with exercise (WT-EX), ApoE knockout (ApoE KO), and ApoE KO mice with exercise (ApoE KO-EX). Vasodilation to acetylcholine (ACh) was elicited in the presence of inhibitors of ER stress, eNOS, caspase-1, and UCP-2 (Tudca, L-NAME, AC-YVARD-cmk, and Genipin, respectively) and the ER stress inducer (Tunicamycin). Immunofluorescence was used to visualize the expression of CHOP, as an indicator of ER stress, in superior mesenteric arteries (SMA). Dilation to ACh was attenuated in ApoE KO but was improved in ApoE KO-EX. Incubation of Tudca and AC-YVARD-cmk improved ACh-induced vasodilation in ApoE KO. L-NAME, tunicamycin, and Genipin attenuated vasodilation in WT, WT-EX and ApoE KO-EX, but not in ApoE KO. Exercise training reversed the increase in CHOP expression in the endothelium of SMA of ApoE KO mice. We conclude that ER stress plays a significant role in endothelial dysfunction of resistance arteries in atherosclerosis and that exercise attenuates ER stress and regulates its critical downstream signaling pathways including eNOS, UCP-2 and caspase-1.


Assuntos
Apolipoproteínas E/fisiologia , Aterosclerose/complicações , Estresse do Retículo Endoplasmático , Endotélio Vascular/patologia , Artérias Mesentéricas/patologia , Condicionamento Físico Animal , Doenças Vasculares/prevenção & controle , Animais , Inflamação/etiologia , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo , Doenças Vasculares/etiologia , Doenças Vasculares/patologia , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...